Low Cost Method for Metal Nano-Coating of Anisotropic Carbon Fibers

Aegis Technology has begun development on a novel class of nano-coating technology to synthesize thin, highly conductive metallic coatings for carbon fibers. Such nano-coatings significantly increase the extinction coefficient of the fibers and thus lead to a variety of military and industrial applications. This nano-coating technology is based on a modified electroless coating method that offers advantages such as:

- High processing efficiency
- Good processing consistency
- Low processing cost
- Scalability for large-quantity production
- Coating of carbon (or glass) fibers having a variety of diameters ($2 \mu \mathrm{~m}, 3 \mu \mathrm{~m}$, and $5 \mu \mathrm{~m}$)

Development Progress

Through the modified electroless coating method, Aegis Technology has successfully synthesized smooth, uniform and continuous Cu nano-coatings with thicknesses of around 100 nm and Ag nano-coatings with thicknesses ranging from 35 nm to 200 nm . Property measurements of the Ag-coated carbon fibers have shown that the Ag nano-coatings can achieve good electrical conductivity as high as 39.3% average conductivity and 55.9% peak conductivity of pure Ag , which far exceeds the Army's requirement of more than 10%. The Ag-coated carbon fibers also demonstrated good flexibility - no cracks or peel-offs were observed when the coated carbon fibers were bent to a curvature radius as small as $300 \mu \mathrm{~m}$. This indicates good robustness for subsequent processing manipulations and applications. The performance and integrity of these nano-coated fibers combined with the optimization results indicate that Aegis Technology's novel nano-coating technology is ready for implementation into future industrial applications.

(a) SEM image of Ag nano-coating on $3 \mu \mathrm{~m}$ carbon fiber
(b) SEM image of Ag nano-coating thickness after peeled off
(c) Prototypes of Ag nano-coated carbon fibers

